Polymers and the Industry University Cooperative Research Center on Photopolymerization

THE UNIVERSITY OF IOWA

CHEMICAL &

BIOCHEMICAL

ENGINEERING

Allan Guymon Professor and Chair

Asphalt, My Family, and Me

- Professor E. Park Guymon (aka Dad)
 - Chemistry Department- Weber State University
 - Heavy Oils Research
 - Great Salt Lake Oil
 - Tar Sands
- Mike Guymon Maxwell Products
 - Foam Containers for Crack Sealant
 - Heat Exchanger
 - Crack Sealant Polymer Additives

Polymers

- A polymer is a macromolecule that is made from many small molecules (monomers) joined together chemically.
- Versatile materials with a wide range of properties.
 - Plastics
 - Coatings
 - Fibers
 - Elastomers (Rubber)
 - Adhesives

Types of Polymers

- Step/Condensation Polymers
 - Polyesters
 - Nylon
 - Polycarbonate
- Chain/Addition Polymers
 - Polyethylene
 - Polystyrene
 - Poly(vinyl acetate)
 - Teflon
 - Acrylic Resins
 - Block Copolymers

Common Polymer Additives for Asphalt

- Asphalt- Mix of Asphaltenes (polycyclic aromatic compounds) and Maltenes (higher MW oil components)
- styrene-butadiene-styrene (SBS) block copolymers (elastomeric)
- styrene-butadiene-rubber (SBR) latex (elastomeric)
- ethylene-vinyl-acetate (EVA) block copolymers (plastomeric)
- natural rubber latex (elastomeric)
- atactic polypropylene (APP) (plastomeric)
- high molecular weight waxes

Photopolymerization – Chain Polymerization Initiated with Light

Advantages ⇒Rapid ⇒Energy Efficient ⇒Solvent Free ⇒Control of Initiation Spatial/Temporal ⇒Initiation Independent of Temperature

Disadvantages ⇒Thin Films ⇒ Oxygen Inhibition

Industry/University Cooperative Research Center FUNDAMENTALS AND APPLICATIONS OF PHOTOPOLYMERIZATIONS

Future Opportunities in Advanced Materials

C. Allan Guymon, Center (CFAP) Co-director, University of Iowa http://css.engineering.uiowa.edu/~cfap/

The NSF Photopolymerizations IUCRC

- ✤ CFAP is collaborative
 - Industry and academic participants
 - Focused on advancing the understanding and implementation of photopolymerization reactions
 - → Research, education, and meeting activities
- CFAP is located both at the University of Iowa and the University of Colorado with co-Directors Chris Bowman and Allan Guymon
- The Directors, Industrial Advisory Board, and other participants meet regularly to assure the achievement of the overall objectives
- Organization of Photopolymerization Fundamentals Meetings in 2002, 2005, 2007, 2009, 2011, 2013, and beyond
- Catalyst for European Symposium for Photopolymer Science (ESPS)

Consortia Level Interactions

- Research Program
 - Developed from Strategic Planning, Company Solicitations, Faculty Proposals and Industrial Selection of Projects
 - Faculty Student Industrial Scientist Feedback Loop and Mentoring
 - Companies have IP Rights, Early Access to Research, and Input on Research Directions and Systems
- Mentoring and Training of Students by Industrial Colleagues - Committees, Seminars, Presentations, etc.

CFAP Organization

- NSF Evaluation has placed CFAP in the top 20% of IUCRCs in nearly every category of performance and satisfaction of the various constituents
- Industrial Sponsors Pay an Annual Fee to Support Research and Heavily Leveraged Funding
- Faculty Co-Develop Proposals with Industry that Subsequently Selects from All the Proposals
- Twice per Year Meetings Provide Feedback to Ongoing Research Projects

Industrial Membership Benefits

Research Results

- Input into Project Selections
- Early Access to Research Results
- Royalty-free License to Center IP
- Interaction with Leading Photopolymerization Scientists and Engineers from Academia and Industry
- Access to State-of-the-Art Facilities
- Spin-off Research Opportunities
- Co-authorship on Publications
- New Members allowed to Develop and Select One Project of Interest

Industrial Membership Benefits

- Interactions with other companies focused on advancing photopolymerization in a non-competitive environment.
- Access to students with extensive experience in photopolymerization
 - → 3M currently employs 5 Center Alumni and Affiliates
 - DSM Functional Materials employs 3 Center Alumni
- CFAP Meetings at industrial and University locations
 - Each member company can send multiple scientists and engineers
 - → Spring 2012 Meeting at 3M
 - Over 100 Scientists Attended
 - Industrial and Student Poster Session for Center Students and Affiliates
 - Mock Interviews and Feedback for Students
 - → Fall 2012 Meeting at University of Iowa
 - Spring 2013 (April 24-26) Meeting at DSM Functional Materials

Industrial Membership

- Membership in the Center requires signing of a membership agreement and paying a membership fee
 Henke
 - Annual membership is \$40,000
 - Can come from multiple divisions within a company (3M membership comes from 8 sources)
- Members have the option of a royalty free, nonexclusive license to all IP for which a disclosure is filed while they are a member
- Current member companies 3M, Boeing, Avery Dennison, Henkel, DSM

NNISON

Center Performance

- CFAP Started in 1999, Received NSF Funding in 2000, Graduated in 2006
- Currently, 5 Member Companies while 7 Research Projects are Funded - Highly Leveraged Funding
- Since 2000, more than 90 publications
- Since 2002, 12 CFAP Invention Disclosures, 3 Licensed to CFAP Companies
- Over 30 PhD students and post-doctoral researchers have worked on CFAP projects
- Multiple Spin-off Research and Other Interactions
- 2007 ACS Cooperative Research Award

Center Personnel

- CU: CN Bowman, KS Anseth, JW Stansbury, RL McLeod, C Musgrave
- UI: AB Scranton, C Coretsopolous, J Jessop, CA Guymon
- Established scientific record
 Since 1994:
 - > 250 refereed publications on photopolymerization
 - → > 50 patent disclosures
- Complementary research expertise
 - → Free radical, cationic, donor-acceptor systems
 - Experimental and theoretical methods
 - Synthesis and Characterization, Scientists and Engineers
 - Emerging applications including nanotechnology and biomaterials
- Established record of productive collaborations

Current Research Projects

- Multiple Mechanisms and Development of Novel Reactions
 - Photo-Click Reactions
- Novel Characterization Techniques
 - Property Evolution in Photopolymer Systems
 - Dark Cure and Shadow Cure in Cationic Photopolymerization
- Novel Applications and Techniques
 - Photo-enforced Stratification in Coating and Adhesive Materials
 - Free Radical Photopolymerizations with LEDs
- Novel Materials Development
 - Controlled Architecture and Functionality Photo-Curable Monomers
 - Covalent Adaptable Networks

Completed Research Projects

- Methods to Reduce Oxygen Inhibition
- Fundamental Studies of Thiol/Ene Photopolymerizations
- Photoinitation Profiles in Thick Polymerization Systems
- Novel (Meth)acrylate Monomers for Ultra-rapid Photopolymerization
- Structural Evolution in Photocrosslinked Films
- Characterization of Crosslinked Degradable Networks
- Kinetic Studies of Hybrid Cationic/Radical Photopolymerizations
- Structured Illumination for Control of Polymerization Shrinkage Stresses
- Development of Parallel Evaluation Scheme for UV Monomer Formulations
- Photopolymerizable Clay Nanocomposites using Reactive Dispersants
- Molecular Fillers for Enhanced Polymer Mechanical Properties: Photopolymerized Molecularly-Filled Composites
- Measurement and Modeling of Oxygen Inhibition Layer in Radical Photopolymerization

Polymerizable Organoclays Increase Nanocomposite Toughness

CN9009/PEGDA/TrPGDA=30/30/40 wt ratio with 20mol% of TMPTMP

Acrylated organoclays increase the stiffness of nanocomposites, whereas thiolated organoclays mainly enhance the elongation.