CALIFORNIA WMA STUDY: ACCELERATED LOAD TESTING, USE IN RUBBERIZED ASPHALT, EMISSION REDUCTION, AND LONG-TERM FIELD PERFORMANCE

David Jones, PhD University of California Pavement Research Center

Global Warm Mix Asphalt Workshop Coralville Iowa, October 2013

UCPRC

- Introduction
- Caltrans research objectives
- ALT and lab testing results
- Emissions
- Field tests
- Conclusions

Introduction

- Rapid growth in the use of WMA
- In 2006, limited research to back up claims
- Better understanding required before full implementation

Summary

Introduction

- Caltrans research objectives
- ALT and lab testing results
- Emissions
- Field tests
- Conclusions

California Research Objectives

- Determine whether the addition of additives to reduce the production and construction temperatures of asphalt concrete influences performance
- Investigate additional benefits
 - Use in rubberized AC
 - Increased RAP content
 - Night paving
 - Late season paving
 - Long hauls
 - Overcome environmental constraints
- Guide the implementation of WMA

Workplan Summary

- Objectives met through:
 - Laboratory studies
 - Accelerated load testing
 - Field testing
- Phased approach followed
- Phase 1 & 2 DGAC
 - 3 most prominent technologies in 2007
 - Advera WMA[®]
 - EvothermTM
 - Sasobit[®]
 - Rutting and moisture sensitivity

Workplan Summary

Phase 3, R-WMA-G

- 7 technologies/each group
 - Advera[®] WMA.
 - Astec Double Barrel[®] Green.
 - Cecabase RT[®].
 - Evotherm DATTM.
 - Gencor Ultrafoam GXTM.
 - RedisetTM WMX.
 - Sasobit[®]
- Laboratory studies
 - PMFC, PMLC, LMLC
 - Rutting & cracking performance
 - Moisture sensitivity
 - Other
 - Durability (OGFCs)
 - Aging
 - Emissions

Workplan Summary

- Accelerated load testing
 - Test track construction monitoring
 - Rutting
 - Moisture sensitivity
 - Cracking
 - Binder aging
 - Forensic
- Field studies
 - Constructability
 - Long-term performance

Accelerated Load Testing

Summary

- Introduction
- Caltrans research objectives
- ALT and lab testing results
- Emissions
- Field tests
- Conclusions

Phase 1 & 2 Observations

- Early rutting potential linked to less binder oxidation (beware of reducing binder content)
- No indication that the three warm-mix additives tested influence long-term rutting & fatigue performance or increase moisture sensitivity
- Construction quality/engineering remains a key concept
- Key issues
 - Beware wet aggregates
 - Beware initial "tenderness" because of less binder oxidation

Phase 3 Observations

- WMA mixes had significantly less smoke & odor
- WMA mixes were notably more workable
- Compaction generally poor
 - Beware temperature limits
 - Set on compaction requirements, not production!
 - Rethink compaction
 - Oxidation rates on rubber different to conventional
 - Different warm-mix technologies have different influences on mix chemistry and emissions
- WMA generally had equal or better performance

Laboratory Testing

- Rutting performance (Shear, AMPT, and Hamburg)
 - Early rutting potential
 - Similar after about 9 12 months
 - Matched ALT and field performance
- Fatigue cracking performance (beam fatigue)
 - WMA had no effect, matched ALT and field performance
- Moisture sensitivity (Hamburg, TSR)
 - Some issues with water based technologies
 - Moisture in aggregate
 - Did not match Phase 2 ALT, but did match field in some instances
- Durability (Cantabro)
 - Some effect depending on technology, matched field performance

Summary

- Introduction
- Caltrans research objectives
- ALT and lab testing results
- Emissions
- Field tests
- Conclusions

Sampling Process

Alkane Emissions

Total Alkane Emissions

PAH Emissions

Phase 3 Emissions

Mix

Key Findings

- Alkane emissions ranged from 117 µg/m³ (WMA) to 2,516 µg/m³ for conventional HMA
- Majority of alkane emissions are volatilized in the first hour after the sampling initiation

Summary

- Introduction
- Caltrans research objectives
- ALT and lab testing results
- Emissions
- Field tests

Conclusions & implementation

Field Tests

- Numerous pilot studies
- 10 monitored closely, selected based on key variable such as binder, haul time, mix, climate, etc
- Morro Bay (SLO-1)
 - PM, cold coastal
- McKinleyville (Hum-20)
 - PM-OGFC, long haul, cold coastal

Ravelling

Morro Bay: 2007 - 2013

McKinleyville: 2008 - 2012

Summary

- Introduction
- Caltrans research objectives
- ALT and lab testing results
- Emissions
- Field tests
- Conclusions

Conclusions

- Comprehensive, systematic study to guide implementation of WMA in California
 - Laboratory, ALT and field performance
- Confirmed equal performance can be obtained
 - Understand compaction temperatures and method
 - Beware initial tenderness/initial higher rutting
 - Beware moist aggregates
 - WMA does not replace good engineering practice
- Better performance than hot-mix on long hauls and on rubberized AC
- Significant reduction in alkane emissions

David Jones <u>djjones@ucdavis.edu</u> <u>www.ucprc.ucdavis.edu</u>

Global Warm Mix Asphalt Workshop Coralville Iowa, October 2013

